On univariate and bivariate aging for dependent lifetimes with Archimedean survival copulas

نویسنده

  • Franco Pellerey
چکیده

Let E = (X,Y ) be a pair of exchangeable lifetimes whose dependence structure is described by an Archimedean survival copula, and let Et = [(X − t, Y − t)|X > t, Y > t] denotes the corresponding pair of residual lifetimes after time t, with t ≥ 0. This note deals with stochastic comparisons between E and Et: we provide sufficient conditions for their comparison in usual stochastic and lower orthant orders. Some of the results and examples presented here are quite unexpected, since they show that there is not a direct correspondence between univariate and bivariate aging. This work is mainly based on, and related to, recent papers by Bassan and Spizzichino ([4] and [5]), Averous and Dortet–Bernadet [2], Charpentier ([6] and [7]) and Oakes [16]. AMS Subject Classification: 60E15, 60K10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on a Generalized Archimedean Family of Copulas

Durante et al. (2007) introduced a class of bivariate copulas depending on two generators which generalizes some known families such as the Archimedean copulas. In this paper we provide some result on properties of this family when the generators are certain univariate survival functions.

متن کامل

DUCS copulas

Copulas [18] link univariate marginal distribution functions into a joint distribution function of the corresponding random vector. In this paper we will deal with bivariate copulas only. Recall that a function C : [0, 1] → [0, 1] is a (bivariate) copula whenever it is grounded, C(x, y) = 0 whenever 0 ∈ {x, y}, it has neutral element 1, C(x, y) = x∧y, whenever 1 ∈ {x, y} and it is 2-increasing,...

متن کامل

Simulating Exchangeable Multivariate Archimedean Copulas and its Applications

Multivariate exchangeable Archimedean copulas are one of the most popular classes of copulas that are used in actuarial science and finance for modelling risk dependencies and for using them to quantify the magnitude of tail dependence. Owing to the increase in popularity of copulas to measure dependent risks, generating multivariate copulas has become a very crucial exercise. Current methods f...

متن کامل

Dynamic dependence ordering for Archimedean copulas and distorted copulas

This paper proposes a general framework to compare the strength of the dependence in survival models, as time changes, i. e. given remaining lifetimes X , to compare the dependence of X given X > t, and X given X > s, where s > t. More precisely, analytical results will be obtained in the case the survival copula of X is either Archimedean or a distorted copula. The case of a frailty based mode...

متن کامل

Convergence of Archimedean copulas

Convergence of a sequence of bivariate Archimedean copulas to another Archimedean copula or to the comonotone copula is shown to be equivalent with convergence of the corresponding sequence of Kendall distribution functions. No extra differentiability conditions on the generators are needed. r 2007 Elsevier B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kybernetika

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2008